Quantum-Secured Data Centre Interconnect in a Field Environment

KaiWei Qiu¹, Jing Yan Haw^{2*}, Hao Qin^{2*}, Nelly H. Y. Ng¹, Michael Kasper³, Alexander Ling^{2,4}

¹ School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore

² Centre for Quantum Technologies, National University of Singapore

³Fraunhofer Singapore Research Centre@NTU, Nanyang Technological University

⁴Department of Physics, National University of Singapore

*Email: jy.haw@nus.edu.sg; hao.qin@nus.edu.sg

Introduction

- With the advancement of quantum computers, the current asymmetric encryption methods are endangered.
- Long term security requires evaluating quantum-safe technologies.
- Quantum Key Distribution (QKD) provides a mature and commercially ready method to generate secure symmetric secret keys between two parties, where they are secure from potential eavesdropper
- **Field test** of the feasibility of operating QKD devices in commercial environment with existing fiber infrastructure is required.
- In collaboration with 2 data centers from the Singapore Technologies Telemedia Global Data Centers (STT-GDC), we successfully [1]
 - 1. Demonstrated continuous key rate generation, 24x7 operations over data center fiber.
- 2. Simulated extra fiber loss to study quantum bit error rate (QBER) and key rate correlation
- 3. Implemented ETSI GS QKD 014 REST-based API with QKD devices to build a quantum-secured virtual private network (Q-VPN) for data transmission between two data centers.

Fiber Network Infrastructure and QKD Application

Fiber information and QKD locations

Q-VPN

- Cloud-based key management for sample data encryption using AES-256.
- Extract symmetric QKD keys via ETSI GS QKD 014 and establish a secure Q-VPN tunnel for file transfer.

QKD Architecture

 Two IDQ QKD units (Alice & Bob) running the Coherent One Way (COW) protocol [2] connected by fiber with quantum (red), service (blue), and key management (green) channels

Results

1. Performance & stability

• A total of 2 Gbits of keys (or equivalently more than 8 million AES-256 keys) generated

2. Attenuation test for key rate and QBER

Key rate drops as expected with attenuation added

3. QKD Application Integration

- Q-VPN (AES-256) achieved 2.39kbit/s, enabling 11 key refreshes per second.
- Since Q-VPN renews every 10 second, QKD in commercial environment can generate sufficient keys to support the application.

PQC vs QKD

Comparison of Post-Quantum Cryptography (PQC) and QKD for the post-quantum era

	PQC	QKD
Implementation	Software and hardware	Hardware
Protocol security	Computational Complexity	Information- theoretic security
Implementation loopholes	Exist	Exist
Application and usage	Public-key encryption and key establishment, Digital signature	Key establishment
Migration	Software and hardware upgrade	Infrastructure and hardware upgrade
Standardisation and certification	Required	Required

Outlook

- Extend point-to-point QKD link to QKD network topology
- Explore other QKD protocols and vendors
- Security requirements & standard compliance

References and Acknowledgements

[1] Qiu, K., Haw, J. Y., Qin, H., Ng, N. H., Kasper, M., & Ling, A. (2024). Quantum-Secured Data Centre Interconnect in a field environment. Journal of Surveillance, Security and Safety, 5(3), 184-197 [2] Damien Stucki et al., "Continuous high speed coherent one-way quantum key distribution," Opt. Express 17, 13326-13334 (2009)

