Quantum-Secured Data Centre Interconnect in a Field Environment KaiWei Qiu¹, Jing Yan Haw^{2*}, Hao Qin^{2*}, Nelly H. Y. Ng¹, Michael Kasper³, Alexander Ling^{2,4} ¹ School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore ² Centre for Quantum Technologies, National University of Singapore ³Fraunhofer Singapore Research Centre@NTU, Nanyang Technological University ⁴Department of Physics, National University of Singapore *Email: jy.haw@nus.edu.sg; hao.qin@nus.edu.sg ### Introduction - With the advancement of quantum computers, the current asymmetric encryption methods are endangered. - Long term security requires evaluating quantum-safe technologies. - Quantum Key Distribution (QKD) provides a mature and commercially ready method to generate secure symmetric secret keys between two parties, where they are secure from potential eavesdropper - **Field test** of the feasibility of operating QKD devices in commercial environment with existing fiber infrastructure is required. - In collaboration with 2 data centers from the Singapore Technologies Telemedia Global Data Centers (STT-GDC), we successfully [1] - 1. Demonstrated continuous key rate generation, 24x7 operations over data center fiber. - 2. Simulated extra fiber loss to study quantum bit error rate (QBER) and key rate correlation - 3. Implemented ETSI GS QKD 014 REST-based API with QKD devices to build a quantum-secured virtual private network (Q-VPN) for data transmission between two data centers. ## Fiber Network Infrastructure and QKD Application ### Fiber information and QKD locations #### Q-VPN - Cloud-based key management for sample data encryption using AES-256. - Extract symmetric QKD keys via ETSI GS QKD 014 and establish a secure Q-VPN tunnel for file transfer. #### **QKD Architecture** Two IDQ QKD units (Alice & Bob) running the Coherent One Way (COW) protocol [2] connected by fiber with quantum (red), service (blue), and key management (green) channels #### Results #### 1. Performance & stability • A total of 2 Gbits of keys (or equivalently more than 8 million AES-256 keys) generated #### 2. Attenuation test for key rate and QBER Key rate drops as expected with attenuation added #### 3. QKD Application Integration - Q-VPN (AES-256) achieved 2.39kbit/s, enabling 11 key refreshes per second. - Since Q-VPN renews every 10 second, QKD in commercial environment can generate sufficient keys to support the application. ### PQC vs QKD Comparison of Post-Quantum Cryptography (PQC) and QKD for the post-quantum era | | PQC | QKD | |-----------------------------------|---|-------------------------------------| | Implementation | Software and hardware | Hardware | | Protocol security | Computational Complexity | Information-
theoretic security | | Implementation loopholes | Exist | Exist | | Application and usage | Public-key
encryption and key
establishment,
Digital signature | Key establishment | | Migration | Software and hardware upgrade | Infrastructure and hardware upgrade | | Standardisation and certification | Required | Required | #### Outlook - Extend point-to-point QKD link to QKD network topology - Explore other QKD protocols and vendors - Security requirements & standard compliance # References and Acknowledgements [1] Qiu, K., Haw, J. Y., Qin, H., Ng, N. H., Kasper, M., & Ling, A. (2024). Quantum-Secured Data Centre Interconnect in a field environment. Journal of Surveillance, Security and Safety, 5(3), 184-197 [2] Damien Stucki et al., "Continuous high speed coherent one-way quantum key distribution," Opt. Express 17, 13326-13334 (2009)