INTERFACIAL PHASE-CHANGE MATERIALS WITH IMPROVED STABILITY: A COMPARISON OF Ge₄₅Te₅₂S₃/Sb₂Te₃ WITH GeTe/Sb₂Te₃ SUPERLATTICES

Nur Qalishah Adanan¹ (nurqalishah_adanan@sutd.edu.sg) Simon Wredh¹, Jing Ning¹, Yunzheng Wang¹, Robert E Simpson¹ ¹Singapore University of Technology and Design (SUTD), 8 Somapah Road, Singapore

INTRODUCTION

Interfacial phase-change memory (iPCM) [1] superlattices improve performance of PCRAM.

Switching energy for superlattices is reduced by confining the phase transition to 2D to minimise entropic losses.

However, interlayer atomic mixing has been reported in such superlattices.

■ Sulphur(S)-doping might improve stability [2].

To study the effect of sulphur(S)-doping on the stability and switching speeds of GeTe and $Ge_{45}Te_{52}S_3/Sb_2Te_3$ superlattices.

FREE ENERGY CALCULATIONS

Ge45Te52S3/Sb2Te3[1:4]

Ge45Te52S3/Sb2Te3[1:2]

Raman Spectrum of

Ge₄₅Te₅₂S₃/Sb₂Te₃[1:4]

superlattice.

IMPROVED STABILITY WITH SULPHUR DOPING

■Kissinger Analysis Graph for Ge₄₅Te₅₂S₃.

 \blacksquare Ge₄₅Te₅₂S₃ has a higher activation energy of 2.39eV than pure GeTe which was found to be at 2.3 I eV [3] which indicates higher thermal stability.

■XRD plots for Ge₄₅Te₅₂S₃/Sb₂Te₃ and GeTe/Sb₂Te₃ superlattice. ■S-doping decreases the lattice spacing and increases ordering of layers.

CONCLUSIONS

■Ge₄₅Te₅₂S₃/Sb₂Te₃ superlattice provides a solution to the intermixing problem and allows high speed phase change data storage switching with low power heat pulses.

REFERENCES

600

Counts Counts

500

450

[1] R. E. Simpson et al., "Interfacial phase-change memory," Nat. Nanotechnol., vol. 6, no. 8, pp. 501–505, 2011, doi: 10.1038/nnano.2011.96.

[2] J.Tominaga, S. Sumi, and H.Awano, "Intermixing suppression through the interface in GeTe/Sb₂Te₃ superlattice," Appl. Phys. Express, vol. 13, no. 7, 2020, doi: 10.35848/1882-0786/ab9710.

[3] X. Zhou, W. Dong, H. Zhang, and R. E. Simpson, "A zero density change phase change memory material: GeTe-O structural characteristics upon crystallisation," Sci. Rep., vol. 5, no. May, pp. 1-8, 2015, doi: 10.1038/srep11150.

