Atomic Layer Deposition of Wafer-Scale Crystalline WS₂ Thin Films for Back-End-of-**Line Applications**

Muhammed Juvaid. M^{1,3}, Hao Tan^{1,3}, Hippolyte P.A.G. Astier^{1,3}, Jing Yang Chung^{1,3}, Chandan Das^{2,3},

John Sudijono^{2,3} and Silvija Gradečak^{1,3,*}

2. Liner

au = RC

WS₂: Layer

by layer sulf.

Introduction

Growth of large-area 2D materials

- MOCVD, MBE, and ALD: largescale synthesis of TMDCs
- CVD, MBE: Elevated growth temperatures (>700 °C) or hightemperature post annealing and crystalline substrates

Low-temperature growth of WS₂ thin films without Large the assistance of plasma area uniformity for metal diffusion barrier and liner applications replacing conventional materials (TiN/Ti, Excellent TaN/Ta, etc.) step coverage Atomic scale thickness

Bulk sulfurization

Aim

Applications 1. Diffusion barrier

Lo et al, JAP. 128, (2020)

Due to die-shrinking: Resistance of the interconnect increases, in turn increasing the delay in switching speeds

WS, via ALD

Process: 1 (bulk sulfurization)

control

Grow of 1-2 nm tungsten film and consecutive sulfurization

Step 1: W - precursor (T~ 350 °C) Step 2: Sulfur containing gas (T~ 430 °C)

∆x ~ 64 cm⁻

(Bulk)

~ 62.6 cn

∼3 layers)

350

Raman shift (cm⁻¹)

50 Cycle

300

Intensity (a. 1

ITRS, (2011)

Process: 2 (layer by layer growth)

- W pulse and sulfurization processes at a single temperature
- N: number of ALD cycle
- Layer by layer growth

ALD WS₂ - layer by layer deposition at 350 °C

Raman spectra, AFM, X-TEM and EDX suggest the formation of crystalline good quality WS₂ films

Raman spectra shows the quality and number of layers of WS₂

- X-TEM shows the crystalline nature of WS₂
- AFM confirms the lower roughness of WS₂
- RBS shows the stoichiometry of the grown film

Conformal growth

Process 2: wafer-scale and conformal deposition

- Wafer-scale uniform deposition
- Achieved conformality > 95 % for WS₂ films of varying thickness

BEOL Applications

Conductive probe

Diffusion barrier

8 MV/cm

Barrier

breakdown

No barrier 15 s 2.2 nm 10 s WS₂ Process 2 2.9 nm 62 s WS₂ Process 3 3.7 nm $2.1 \times 10^5 \text{ s}$ ~ 6 nm Improved the time to failure values (300 x) by a modified growth recipe for

- TaN (~ 6 nm) shows better performance as compared to WS₂, TaN below 3 - 4 nm may exhibit severe Cu diffusion
- Works are on going on thinner TaN and WS₂ films ($\sim 2 3$ nm) to evaluate the barrier properties

Liner measurements

Liner thickness (nm) Cu film on WS₂ shows lower resistivity

Conclusions

- Large area conformal WS₂ films were grown by a low temperature ALD process without plasma
- WS₂ shows a better diffusion barrier properties (300 x improvement)
- WS₂ exhibits a good liner properties by reducing the resistivity of Cu

Acknowledgement

This research is supported by the National Research Foundation, Singapore, under its Applied Materials-NUS Advanced Materials Corporate Lab (IAF-ICP Ref no.l1801E0022)