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Fig 1: The parameterized linear quantum 

photonic circuits with 𝑚 spatial modes 

consist of two trainable circuit blocks 

𝑊 𝑖 ( Ԧ𝜃𝑖) and one data encoding block 

S 𝑥 with a data encoding phase shifter 

at the top spatial mode.  The multi-

photon Fock states | ۧ𝑛1, 𝑛2, … , 𝑛𝑚 that 

passed through the circuits are detected 

by photon number resolving (PNR) or 

on-off detectors.

Frequency spectrum,𝜴𝒏:
• Informs us about which functions the 

quantum circuits can approximate.

• Depends only on the input photon 

number

Ω𝑛 = −𝑛,−𝑛 + 1,… , 𝑛 + 1, 𝑛

• Quantum circuits with higher input 

photon number are more 

expressive.

Fig 2:  The expressive power of the circuits 

grows with the number of photons. For 

example, perfect fitting of a degree 3 

Fourier series 𝑔(𝑥) is achieved using a 3-

mode linear QPC with 3 input photons.

Fourier coefficients, {𝒄𝝎(𝜣, 𝝀 )}

Fig 3:  The expressive power of a 3-mode 

linear QPCs with on-off detectors (red) is 

only enhanced up to 9 input photons while 

the circuits with PNR detectors (black) may 

be trained to fit arbitrarily large frequencies 

by increasing the number of input photons.

• Determine how the accessible 

functions can be combined.

• Depend on the entire circuit, 

including observable parameters.

• Require at least 

𝑀𝑚𝑖𝑛 = 2𝑛 + 1
degrees of freedom to arbitrarily 

control 𝑛 complex and one real 

Fourier coefficients.

III. Expressivity of linear QPCsII. Linear quantum photonic circuits (QPCs)

IV. Classification 

using linear QPCs

1 Variational Quantum Classifier (VQC)

Fig 5:  The training results on 3 different datasets, i.e: linear (first row), circle 

(second row) and moon (third row) datasets of 60 samples (red and blue solid 

circles) for different input photon numbers, i.e: one, three and five photons.  The 

performance on test set (red and blue solid crosses) of 40 points is given in the 

upper left corner of each respective subplot.  The contours show that the 

classification boundaries become more complicated with more input photons.

• Linear dataset: Can be separated 

by a linear decision boundary, 

hence, easily classified by 

quantum circuits with one 

photon.

• Circle dataset: The decision 

boundary is too constrained –

high expressivity might lead to 

overfitting.

• Moon dataset: Performance 

improved with input photon 

number – a clear illustration of 

the impact of a higher expressive 

power on classification tasks.

3 Quantum-enhanced Random Kitchen Sinks (RKS) • Approximate Gaussian kernels with resolution 𝜎 = 1/𝑘𝛾 by 

constructing random Fourier feature of different frequencies 𝑘

റ𝑧 റ𝑥𝑖 ⋅ റ𝑧 റ𝑥𝑗 = 𝑒 റ𝑥𝑖− റ𝑥𝑗
2
/2𝜎2

with റ𝑧 റ𝑥𝑖 = 𝑓 𝑛 𝑥1,𝑖 , Ԧ𝜆
𝑘 ⋯ 𝑓 𝑛 𝑥𝑅,𝑖 , Ԧ𝜆

𝑘
𝑇
/ 𝑅 where 

𝑓(𝑛) 𝑥𝑟,𝑖 , Ԧ𝜆
(𝑘) = 2cos(𝑘𝛾[𝑤𝑟 ⋅ റ𝑥𝑖 + 𝑏𝑟]) , 𝑤~𝒩𝐷(0, 𝐼) and 

𝑏~Uniform 0,2𝜋 . 

• The circuit can access Gaussian kernel of different resolutions 

simultaneously by considering different observables 𝑀( Ԧ𝜆 𝑘 ).
• Classify moon datasets using circuit with 10 input photons (six 

resolutions are illustrated here) and different dimensions of റ𝑧
𝑅 = 1, 10, 100 ; Optimal resolution: 𝜎 = 0.25, 1/7 (𝑅 = 100).

2 Quantum-assisted kernel methods

• Approximate Gaussian kernels with resolution 𝜎

𝑓(𝑛) 𝛿, Ԧ𝜆(𝜎) ≈ 𝑒𝛿/2𝜎
2
= 𝑘 റ𝑥𝑖 , റ𝑥𝑗

using circuit output of Fig.4(b) with 𝛿 = റ𝑥𝑖 − റ𝑥𝑗
2
.

• Kernels with finer resolution require more photon to 

approximate, i.e: circuit with 4 photons can fit kernels 

with 𝜎 = 0.50, but not 𝜎 = 0.33/0.25.

The data-embedding process is one of the bottlenecks of quantum machine learning, potentially negating any quantum speedups. In light of this, more effective data-

encoding strategies are necessary. We propose a photonic-based bosonic data-encoding scheme that embeds classical data points using fewer encoding layers and 

circumventing the need for nonlinear optical components by mapping the data points into the high-dimensional Fock space. The expressive power of the circuit can 

be controlled via the number of input photons. Our work shed some light on the unique advantages offered by quantum photonics for enhancing the expressive 

power of quantum machine learning models. By leveraging the photon-number dependent expressive power, we propose three different noisy intermediate-scale 

quantum-compatible binary classification methods with different scaling of required resources suitable for different supervised classification tasks. 
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• Consider different input states, i.e: coherent states and squeezed states.

• Study trainability and generalization power of linear QPCs.

Fig 4: Linear QPCs with (a) 3 spatial modes for binary classification of two-dimensional input data. 

Each dimension of input data is encoded using one phase shifter and the class of data points is 

assigned by the sign of the circuit’s output observables. (b) 2 spatial modes with fixed 𝑊 𝑖 (50:50 

beam splitters) for quantum-assisted kernel methods (Data encoded: Distances between two data 

points, φ = 𝛿 = റ𝑥𝑖 − റ𝑥𝑗
2
[See      ]) and quantum-enhanced random kitchen sinks (Data encoded: 

φ = 𝑥𝑟,𝑖 = 𝛾(𝑤𝑟 ⋅ റ𝑥𝑖 + 𝑏𝑟) [See      ]).  Classification is performed by input the approximated kernel 

values to kernel machines.

• Circuit output can be expressed as a Fourier series:

where σ𝑖 𝑛𝑖 = 𝑛, 𝒰 𝑥, Θ = 𝒲 2 Ԧ𝜃2 𝒮(𝑥)𝒲 1 Ԧ𝜃1 with Θ = Ԧ𝜃1, Ԧ𝜃2 ,

and ℳ Ԧ𝜆 is a parameterized observable. 

𝑓(𝑛) 𝑥, Θ, Ԧ𝜆 = 𝑛1, 𝑛2, … , 𝑛𝑚 𝒰† 𝑥, Θ ℳ Ԧ𝜆 𝒰 𝑥, Θ 𝑛1, 𝑛2, … , 𝑛𝑚

= 

𝜔∈Ω𝑛

𝑐𝜔(Θ, Ԧ𝜆 )𝑒
−𝑖𝜔𝑥

• Study the expressivity of linear QPCs through

➢ Frequency spectrum,Ω𝑛
➢ Fourier coefficients, {𝑐𝜔(Θ, Ԧ𝜆 )}

• The linear QPCs can be trained to perform function fitting, binary 

classification, and kernel approximation for machine learning (ML) algorithms 

(e.g: support vector machines) using its output observables. 
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