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Introduction Experimental results

Crystalline silicon bas_e_d photovolf[aic (PV) cells still remains as 1 of the most promising _solutions to m;w"* Fny AREARIRL L | O Upon lowering of B,H,
the_ global energy crisis by offering a re_newable and low cost alternative t_o conver_monal fuels, b Aty : / flow in the feedstock
which can be rapidly implemented in industry due to good understanding of silicon based ¥ \ recipe, the following are

optoe_lectronl_c devices driven by the technologlcal revolution. Hc_)wever,_ efflglenme_s of c-Si still e ”ﬂf‘ L ” | qualitatively determined
remain relatively low due to either optical losses (poor coupling of light into active layers), or P { Ba

electronic losses (recombination of photo-generated carriers). In this work, a remote ICP facility ~ T ATA D 2% i | 1. Crystallinity of
was used to fabricate highly doped (~10%° cm3) p-type pc-Si thin films through fragmentation BT g i Ap—— -  deposited films

and dissociation of SiH,+H,+B,H, feedstocks. The remote configuration of the discharge facility — i—— increases

enabled low damage of fabricated films typically associated with ICP discharges, while retaining 2. Deposition rate

the uniform discharge characteristics over large areas with enhanced production of radicals
and reactive species. This resulted in highly crystalline and highly doped Si films which has huge
potential for applications in both c-Si and thin film PV cells as well as other optoelectronic devices.
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I t d t' 8 | Power Bias Flow rate | Pressure| Process time | Feedstock gas
n ro UC IOn 3.2kW -750V 10sccm 2Pa 30 minutes Silane

Crystalline silicon based photovoltaic (PV) cells still remains as 1 of the most promising solutions to Samples were exposed to a high-density silane plasma discharge in electromagnetic
the global energy crisis by offering a renewable and low cost alternative to conventional fuels, (H/bright) mode for deposition of amorphous silicon thin films. The discharge conditions were
which can be rapidly implemented in industry due to good understanding of silicon based kept constant for both sets of experiments, with the only variation being the dielectric top lids.
optoelectronic devices driven by the technological revolution. However, efficiencies of c-Si still The resulting films were characterized with Secondary lon Mass Spectroscopy (SIMS) and
remain relatively low due to either optical losses (poor coupling of light into active layers), or Fourier-transform Infra-red spectrocsopy (FTIR) to reveal the grades of the-fllm: and how the
electronic losses (recombination of photo-generated carriers). In this work, a remote ICP facility lids influence the ability of the reactor to stay free from contaminants. | |

was used to fabricate highly doped (~10%° cm3) p-type uc-Si thin films through frqgmentation a_lr_1d Figure 8: Plasma processing parameters

dissociation of SiH,+H,+B,H, feedstocks. The remote configuration of the discharge facility which were kept constant for film growth

enabled low damage of fabricated films typically associated with ICP discharges, while retaining Figure 9: ToF (time of flight) Secondary

the uniform discharge characteristics over large areas with enhanced production of radicals and lon Mass Spectrometer (SIMS)

reactive species. This resulted in highly crystalline and highly doped Si films which has huge Figure 10: Fourier-Transform Infra-red

potential for applications in both c-Si and thin film PV cells as well as other optoelectronic devices. spectrometer (FTIR)

The aim of this project was to fabricate highly doped p-type uc-Si thin films through ICP-

CVD to serve as a back surface field (BSF) effect passivation layer in PV cells Expe ri m e ntal reS u ItS
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with the mentioned modifications. High quality contaminant free films showing promising

are required for high efficiency PV cells. Dry processing in plasma jncrement in carrier lifetime
reactors gives added control over the processes by tuning plasma in films deposited with a-Si
parameters. Further work investigates the passivating qualitites of Figure 15: Modified CCP
films by measuring the carrier lifetime. Light management issues are reactor texturing c-Si

Amorphous hydrogenated silicon was deposited on top of c-Si substrates in a LF-
|ICP reactor. Experiments were conducted with the conventional quartz (SiO,) lid
first, before the lid was swapped out to alumina (Al,O,). The reactor was evacuated
to 104 Pa prior to each experiment with the aid of a turbomolecular pump.

also dealt with in the process. wafers with plasma etching
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