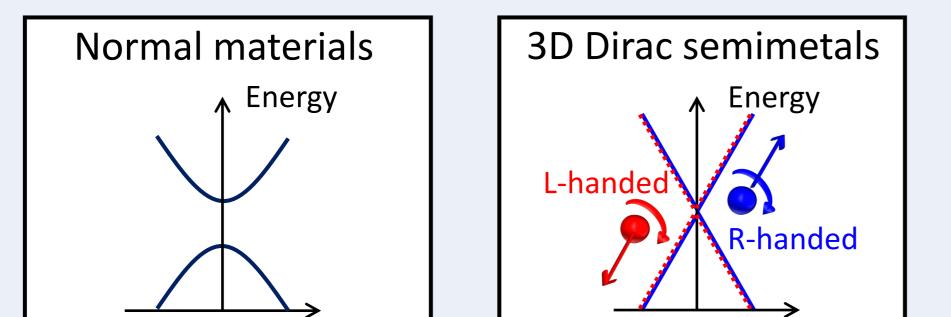
Nonlinear optical response and high-harmonic generation in 3D Dirac semimetals


Jeremy Lim^{1*}, Yee Sin Ang¹, Liang Jie Wong², Lay Kee Ang¹

*Email: jeremy_lim@mymail.sutd.edu.sg

- 1. Singapore University of Technology and Design, Singapore 487372.
- 2. Singapore Institute of Manufacturing Technology, A*STAR, Singapore 138634.

Introduction

- 3D Dirac semimetals are 3D analogues of graphene.
- Its electrons obey a linear dispersion with a single gapless point and have chirality ("handedness").
- The linear dispersion leads to nonlinear field responses making them attractive for nanophotonic/plasmonic uses.

4 Key results

Chiral Bloch Equations:

 $\dot{\mathcal{N}}_{R} = -2\dot{\theta}\Re\left(\mathcal{P}_{R}e^{-2i\Omega}\right) + 2\dot{\phi}\sin\theta\Im\left(\mathcal{P}_{R}e^{-2i\Omega}\right) \quad \begin{array}{l} \text{Right-}\\ \text{handed}\\ \dot{\mathcal{P}}_{R} = i\mathcal{P}_{R}\dot{\phi}\cos\theta + \frac{1}{2}\mathcal{N}_{R}e^{+2i\Omega}\left(\dot{\theta} - i\dot{\phi}\sin\theta\right) \quad \begin{array}{l} \text{electron}\\ \text{electron} \end{array}$

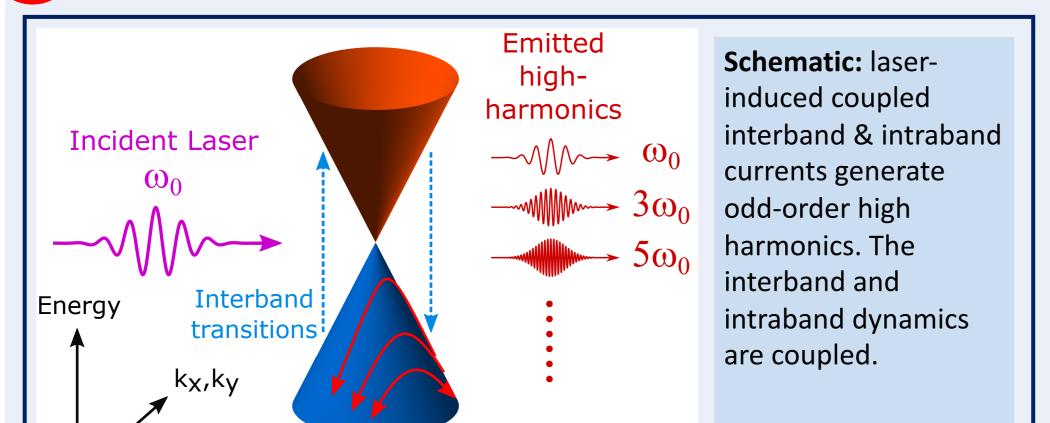
$$\dot{\mathcal{N}}_{L} = 2\dot{\theta} \Re \left(\mathcal{P}_{L} e^{-2i\Omega} \right) + 2\dot{\phi}\sin\theta \Im \left(\mathcal{P}_{L} e^{-2i\Omega} \right)$$
$$\dot{\mathcal{P}}_{L} = -i\mathcal{P}_{L}\dot{\phi}\cos\theta - \frac{1}{2}\mathcal{N}_{L} e^{+2i\Omega} \left(\dot{\theta} + i\dot{\phi}\sin\theta \right)$$

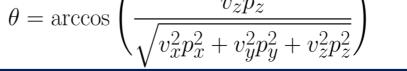
 $\phi = \arctan\left(\frac{v_y p_y}{v_x p_x}\right) \quad \hbar\Omega = \int_{t_0}^t E(t') dt'$

 \mathcal{N} : Population difference between conduction and valence bands

Momentum

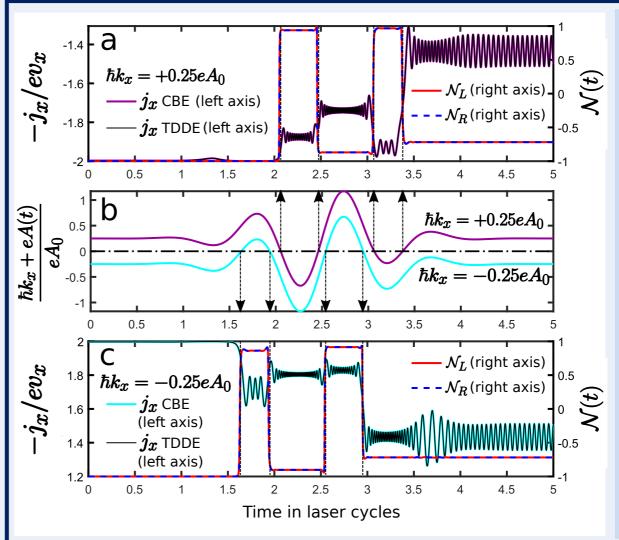
Momentum

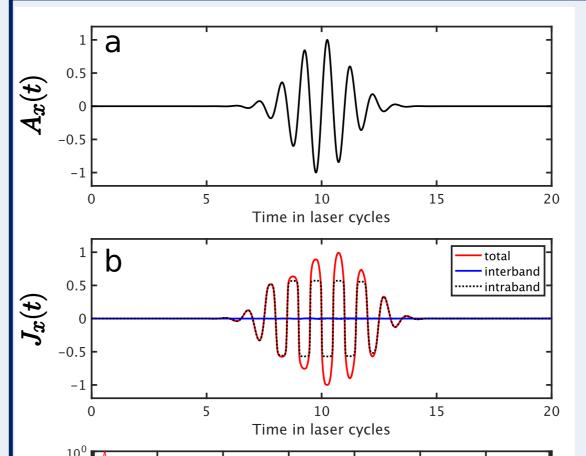

2


3

Motivation and objective

- The nonlinear field response of 3D Dirac semimetals imply efficient high harmonic generation (HHG).
- *Ab initio* simulations of real 3D Dirac semimetals are computationally expensive and obscure underlying physical mechanisms.
- Aim to obtain a simple and *physically-transparent* description of nonlinear field-response [1,2].
- Use our model to *simulate electron dynamics* in a *computationally efficient* way to *predict HHG spectra*.


Theory and methodology


 \mathcal{P} : Interband coherence

Single-electron field-response:

Figure 1: Time-evolution of (b) electron minimal-coupling momentum, and (a),(c) population difference (right axis) and single-electron current (left axis) for 2 starting momentum values. When the electrons are driven close to the Dirac point (horizontal dash-dotted line in (b)), instantaneous and complete population inversion occurs resulting in nonlinear current response.

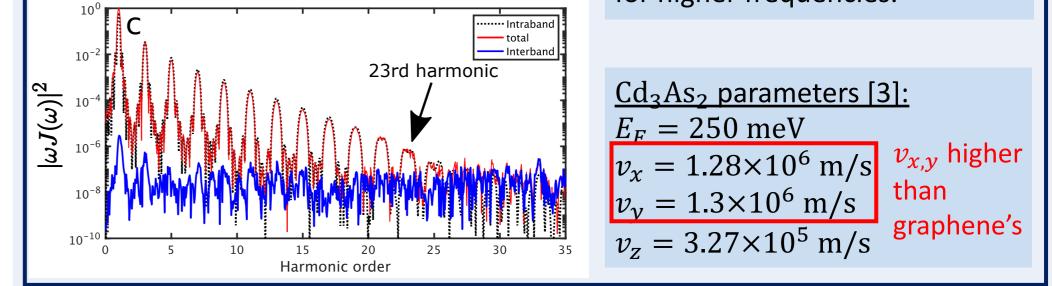

Macroscopic field-response and Cd₃As₂ HHG spectra:

Figure 2: HHG in Cd₃As₂. (a) Vector potential temporal profile; (b) macroscopic current integrated over all momentum-resolved contributions; (c) HHG spectra obtained by performing a Fourier transform on the current. Odd-order high harmonics are dominated by the intraband current response. Interband response dominates for higher frequencies.

- Temporally propagate eigenspinors of chiral Weyl equations in momentum space to obtain a set of ODEs for band population evolution.
- ODEs cast into form of *chiral Bloch equations* which describe *interband population dynamics* and *induced currents*.
- Fully *non-perturbative*, *anisotropic* and no approximations beyond the *single-electron massless regime*.

Intraband linear conductivity derived using our formalism: $\sigma^{(1)} = \sigma_0 \frac{4E_f^2 g}{3\pi^2 \hbar^2 v_f 1 - i\omega\tau} \tau$

Result is in agreement with another work coproduced by our group [4].

<u>References</u>

- 1. Ishikawa K.L., Phys. Rev. B, 82, 201402 (2010).
- 2. Ishikawa K.L., *New Journ. Phys.*, **15**, 055021 (2013).
- 3. Liu Z.K., et al., *Nat. Mater.*, **13**, 677 (2014).
- 4. Ooi, K.J.A., et al., *Appl. Phys. Lett. Photon.*, **4**, 034402 (2019).

Acknowledgments

We acknowledge funding from A*STAR IRG (grant number: A1783c0011)

